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Abstract. We establish a formula for multiplicities of eigenvalues for the Laplace oper-
ator subject to the Dirichlet boundary condition on a square. In particular, we show that
for any given positive integer m, there is an eigenvalue whose multiplicity is exactly m.
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1. Introduction

Pythagoras of Samos was an ancient Greek philosopher and mathematician best known
for his contributions to geometry. He is also credited with the discovery that strings whose
lengths have a ratio of small integers produce harmonious sounds. This discovery is the
foundation of Pythagorean tuning in music. Although Pythagoras could not have known
this, his theory can be explained using the language of partial differential equations. Sup-
pose we have a homogeneous elastic string of length L with ends tied along the horizontal
x-axis at x = 0 and x = L. Let u(x, t) be the displacement from equilibrium at position x
and time t. Let T be the tension constant and ρ the mass density. From Newton’s second
law of motion applied to the string over the interval [x, x+ ∆x], we obtain

T · ∂u
∂x

(x+ ∆x, t)− T · ∂u
∂x

(x, t) ≈ ρ∆x · ∂
2u

∂t2
.

Dividing both sides by ∆x and letting ∆x → 0, we then arrive at the 1-dimensional wave
equation with initial and boundary conditions:

(1.1)


∂2u

∂t2
= c2

∂2u

∂x2
;

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x);

u(0, t) = u(L, t) = 0.

Here f(x) is the initial position and g(x) the initial velocity of the string. The constant

c =
√
T/ρ is called the wave speed of the vibration.

Solving this equation by the method of separation of variables, we set u(x, t) = X(x)T (t).
Then

T ′′

c2T
=
X ′′

X
= −λ,

where λ ≥ 0 is a constant. Solving the boundary value problem

X ′′ = −λX, X(0) = X(L) = 0,
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we obtain the eigenvalues and the associated eigenfunctions

(1.2) λk =

(
kπ

L

)2

, Xk(x) = sin

(
kπx

L

)
, k = 1, 2, . . . .

From T ′′ = −λkc2T , we then have

Tk = Ak cos(c
√
λkt) +Bk sin(c

√
λkt).

It follows that the solution to the boundary value problem (1.1) is given by

(1.3) u(x, t) =
∞∑
k=1

sin

(
kπx

L

)(
Ak cos

(
kcπt

L

)
+Bk sin

(
kcπt

L

))
,

where Ak and Bk are determined by the Fourier sine series of f(x) and g(x) over [0, L] as
follows:

Ak =
2

L

∫ L

0
f(x) sin

kπx

L
dx, Bk =

2

kcπ

∫ L

0
g(x) sin

kπx

L
dx.

From (1.3), we know that the fundamental frequency of vibration is

F1 =
c

2L
=

1

2L

√
T

ρ

and the frequencies of the overtones are

Fk =
kc

2L
=

k

2L

√
T

ρ
, k = 2, 3, . . . .

Notice that the frequencies of the overtones are integral multiples of the fundamental
frequency. Relationship among amplitudes of the frequencies of the fundamental tone and
the overtones determines the timbre of a music instrument, the characteristics of how it
sounds. We refer the reader to [1] for an excellent exposition on the subject.

We now consider an elastic and homogeneous drumhead stretched over a frame. The
frame is represented as a domain Ω in the xy-plane. Let u(x, y, t) be the vertical dis-
placement of the membrane from the equilibrium position and assume that the horizontal
displacement is negligible. For any disk D ⊂⊂ Ω, it follows from Newton’s second law of
motion that ∫

∂D
T
∂u

∂n
dS =

∫
D
ρuttdA,

where T is the tension constant, ρ the density constant, and n the outward normal direction
of the boundary ∂D of the domain D. By the divergence theorem, we then have∫

D
T∆udA =

∫
D
ρuttdA,

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator. Dividing both sides by the area of
the disk and letting its radius tend to 0, we then arrive at the wave equation:

(1.4) utt = c2∆u on Ω, u = 0 on ∂Ω,

where c =
√
T/ρ.
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Solving this wave equation by separation of variables, we let u(x, y, t) = T (t)V (x, y)
where T (t) is a function depending only on the time variable t and V (x, y) is a function
depending only on the spatial variables x and y. It then follows from (1.4) that

T ′′

c2T
=

∆V

V
= −λ,

where λ is a constant. The boundary value problem (1.4) is now reduced to solving the
following Helmholtz equation subject to the Dirichlet boundary condition:

(1.5) ∆V = −λV on Ω, V = 0 on ∂Ω.

The λ’s are the eigenvalues of the Dirichlet Laplacian, the (negative of the) Laplace operator
subject to the Dirichlet boundary condition.

It follows from Rellich’s compactness lemma that the spectrum of the Dirichlet Laplacian
consists of isolated eigenvalues of finite multiplicity (see, e.g., [6, Theorem 6.2.3]). Let

0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . .
be the eigenvalues, arranged in an increasing order and repeated according to multiplicity.
Let ϕk(x, y) be the eigenfunction associated with the eigenvalue λk. Then the solution to
the wave equation (1.4) has the form of

u(x, y, t) =

∞∑
k=1

(
Ak cos(c

√
λkt) +Bk sin(c

√
λkt)

)
ϕk(x, y).

The terms in the summation have frequencies

Fk =
c
√
λk

2π
, k = 1, 2, . . . ,

in the time variable. F1 is the fundamental frequency while the Fj ’s, j ≥ 2, are the
frequencies of the overtones of the drum. The above formula tells us that the frequencies of
the vibration are obtained by multiplying the square root of the eigenvalues by a constant.

2. Multiplicities of Eigenvalues

The multiplicity mult (λ) of an eigenvalue λ is the number of linearly independent eigen-
functions associated to the eigenvalue λ:

mult (λ) = dim{V | −∆V = λV on Ω, V = 0 on ∂Ω}.
Physically, the multiplicity represents the number of modes associated to the same fre-
quency. In this paper, we study the structure of the set of all multiplicities and how it is
related to geometry of the domain. We are particularly interested in characterizing domains
that satisfy the following

Property (M): A domain is said to satisfy Property (M) if for any positive integer n,
there exists an eigenvalue λ such that mult (λ) = n.

For the vibration of a string, it follows from (1.2) that all eigenvalues are simple (i.e.,
they all have multiplicity one). The situation is not as simple in higher dimensions. The
classical Courant’s Nodal Domain Theorem states that the number of nodal domains of
an eigenfunction associated to the kth-eigenvalue is at most k. (Recall that the nodal
domains are the connected components of the complement in Ω of the zero set of the
eigenfunction.) As a consequence, the first eigenvalue on a (connected) domain is always
simple. Determining multiplicities of higher eigenvalues is a highly non-trivial problem.
For smoothly bounded planar domains, S.-Y. Cheng [3] showed that mult (λ2) ≤ 3 and
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Nadirashvili [10] showed that mult (λk) ≤ 2k − 1 for k ≥ 3 (see the recent preprint [2] and
references therein for an extensive discussion of relevant results).

In general, it is difficult to explicitly compute the eigenvalues and determine their mul-
tiplicities on a planar domain. Explicit formulas for the eigenvalues are known only for a
few cases such as circles, rectangles, equilateral triangles, hemi-equilateral triangles, and
isosceles right triangles (see [9]).

The eigenvalues on the rectangle

Ra,b = {(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b}, a, b > 0,

can be computed by using separation of variables V (x, y) = X(x) ·Y (y). These eigenvalues
and their associated eigenfunctions are

λm,n = π2
(
m2

a2
+
n2

b2

)
,

Vm,n(x, y) = sin
mπx

a
sin

nπy

b
,

for m,n ∈ N, where N is the set of all positive integers. For any λ > 0, the multiplicity of
λ is given by

mult (λ) = #{(m,n) ∈ N× N | m2

(a
√
λ/π)2

+
n2

(b
√
λ/π)2

= 1}.

Note that we have used the convention that mult (λ) = 0 if λ is not an eigenvalue. Thus

mult (λ) is the number of integer lattice points on the ellipse with semiaxes a
√
λ/π and

b
√
λ/π in the first quadrant.
For convenience, we say the rectangle Ra,b is rational if (a/b)2 is rational; otherwise, we

say it is irrational.

Proposition 2.1. On irrational rectangles,

mult (λm,n) = 1, ∀m,n ∈ N.

Proof. Suppose otherwise, then there are (m1, n1) 6= (m2, n2) such that

λ = π2
(
m2

1/a
2 + n21/b

2
)

= π2
(
m2

2/a
2 + n22/b

2
)
.

Then
(b/a)2 = (n22 − n21)/(m2

1 −m2
2).

This contradicts the assumption that (a/b)2 is irrational. �

3. The Case of Squares

On a square with side length a, mult (λ) is the number of integer lattice points on the

circle with radius a
√
λ/π in the first quadrant. The problem of counting integer lattice

points on a circle has a long history, dating back to Pythagoras, Fermat, Euler, Legendre,
Gauss, and others (see [4]).

Let r2(k) be the number of ways k can be expressed as a sum of squares of a pair of
(ordered) integers. Namely, r2(k) is the number of integer lattice points on the circle with

radius
√
k. For λ > 0, set k = a2λ/π2. Taking into account of symmetry and the fact that

lattice points on the coordinate axes are excluded, we then have

mult (λ) =

{
r2(k)/4, k is not a square;

(r2(k)− 4)/4, k is a square.
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To compute r2(k), we use a formula due to Legendre (see [5, Theorem 2.2.11]). Let d1(k)
be the number of divisors of k which are congruent to 1 mod 4 and d3(k) the number
of divisors of k which are congruent to 3 mod 4. Legendre’s formula states that for any
positive integer k,

r2 (k) = 4 (d1 (k)− d3 (k)) .

With Legendre’s formula, we then obtain the main result of this paper:

Theorem 3.1. On a square with side length a, for any λ > 0, set k = a2λ/π2. Then

mult (λ) =


d1(k)− d3(k), k is not a square;

d1(k)− d3(k)− 1, k is a square;

0, k is not an integer.

We now examine whether squares satisfy Property (M). For any positive integer n, we
need to find an eigenvalue λ whose multiplicity is n. Let p be any prime that is congruent
to 1 mod 4. Then pn−1 is a square if n is odd, while for even n it is not (because

√
p is

irrational). Thus the above theorem gives

mult (pn−1π2/a2) =

{
n, n is even,

n− 1, n is odd.

The above construction gives a sequence of eigenvalues λ = pn−1π2/a2 whose multiplicities
include all even positive integers. To obtain a sequence of eigenvalues with multiplicities
that include all positive integers, we set λ = 2 · pn−1π2/a2. The factor 2 is introduced so
that 2 · pn−1 is never a square regardless of whether n is even or odd. From the above
theorem, we then have

mult (2 · pn−1π2/a2) = n,

for any positive integer n. We have thus shown that squares satisfy Property (M).
We now turn to isosceles right triangles. Let Ta = {(x, y) | 0 < x < a, 0 < y < x} be the

isosceles right triangle with side length a. By reflecting the triangle about its hypotenuse
and using the above computations on the resulting square, we obtain the eigenvalues and
the associated eigenfunctions:

λmn =
π2

a2
(m2 + n2), umn = sin

mπx

a
sin

nπy

a
− sin

nπx

a
sin

mπy

a
, m, n ∈ N, n > m.

Thus for any λ > 0, mult (λ) is the number of integer lattice points (m,n) on the circle

with radius a
√
λ/π in the first quadrant above the line y = x. Note that the lattice point

(m,n) on the line y = x corresponds to k = m2 + n2 being the double of a square. From
Theorem 3.1, we then have in this case

mult (λ) =


1
2(d1(k)− d3(k)), k is not a square nor a double of a square;
1
2(d1(k)− d3(k)− 1), k is a square or a double of a square;

0, k is not an integer,

where k = a2λ/π2 as before. Thus for the right isosceles triangle with side length a,

mult (pn−1π2/a2) = mult (2 · pn−1π2/a2) =

{
n/2, n is even;

(n− 1)/2, n is odd.

It follows that isosceles right triangles also satisfy Property (M).
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4. Further Remarks

(1) We have shown that squares and isosceles right triangles satisfy Property (M) while
irrational rectangles do not. The calculation for multiplicities of eigenvalues for a general
rational rectangle is more complicated. It requires deeper results from number theory and
will be studied in a forthcoming paper.

(2) Eigenvalues of the Dirichlet Laplacian on a circle can be expressed in terms of the
zeros of the Bessel functions. It is well known that except for the first eigenvalue, all other
eigenvalues on a circle have multiplicity 2 (see, e.g., [7]).

(3) Eigenvalues on an equilateral triangle were explicitly computed by Gabriel Lamé
in 1833. Multiplicities of these eigenvalues have been studied by McCartin, Pinsky, and
others. We refer the reader to [9] for an extensive treatment on the subject. As will be
shown in the forthcoming paper, equilateral triangles also satisfy Property (M).

(4) It would be interesting to characterize polygons that satisfy Property (M). The
works on this problem for rectangles and equilateral triangles have already demonstrated a
fascinating connection among geometry, number theory, and partial differential equations.
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