List of Publications by Siqi Fu

For preprints or reprints of any of the following papers, please email Dr. Fu at sfu@camden.rutgers.edu


  1. A sharp estimate on the Bergman kernel of a pseudoconvex domain, Proceedings of the American Mathematical Society 121(1994), 979–980.

  2. Some estimates of the Kobayashi metric in the normal direction, Proceedings of the American Mathematical Society 122 (1994), 1163-1169.

  3. On Completeness of invariant metrics of Reinhardt domains, Archiv der Mathematik(Basel) 63 (1994), 166-172

  4. Asymptotic expansions of invariant metrics of strictly pseudoconvex domains, Canadian Mathematical Bulletin 38 (1995), 196–206.

  5. Geometry of Reinhardt domains of finite type in C2,Journal of Geometric Analysis (1996), no.3, 407-431.

  6. Reinhardt domains with non-compact automorphism groups (with A. Isaev and S. Krantz), Mathematical Research Letters  3 (1996), 109-122.

  7. Examples of domains with non-compact automorphism groups (with A. Isaev and S. Krantz), Mathematical Research Letters  (1996), 609-617.

  8. Finite type conditions on Reinhardt domains (with A. Isaev and S. Krantz), Complex Variables: Theory and Application 31 (1996), 357-363.
  9. Spectral domains in several complex variables (with B. Russo), Rocky Mountain Journal of Mathematics 27 (1997), no. 4, 1095-1116.
  10. On strictly pseudoconvex domains with Kahler-Einstein Bergman metrics (with B. Wong), Mathematical Research Letters 4 (1997), no. 5, 697-703.

  11. On boundary accumulation points of a smoothly bounded pseudoconvex domain in C2 (with B. Wong), Mathematische Annalen 310 (1998), no. 1, 183-196.

  12. Compactness of the d-bar-Neumann problem on convex domains (with E. Straube), Journal of Functional Analysis 159 (1998), 629-641.

  13. The Bergman kernel function: explicit formulas and zeroes (with H. Boas and E. Straube), Proceedings of the American Mathematical Society 127 (1999), 805-811.

  14. On a domain in C2 with piecewise smooth Levi-flat boundary and non-compact automorphism group (with B. Wong), Complex Variables: Theory and Application 42(2000), no. 1, 25-40. 

  15. Transformation formulas for the Bergman kernels and projections of Reinhardt domains, Proceedings of the American Mathematical Society129 (2001), no. 6, 1769-1773. 

  16. Compactness in the d-bar-Neumann problem (with E. Straube), Complex Analysis and Geometry (J. McNeal, ed.), Ohio State University Mathematical Research Institute Publication 9, de Gruyter, 2001, 141-160.

  17. A smoothly bounded domain in a complex surface with a compact quotient (with W. Cheung, S. Krantz, and B. Wong), Mathematica Scandinavica 91 (2002), 82-90.

  18. Semi-classical analysis of Schrödinger operators and compactness in the d-bar-Neumann problem (E. Straube<), Journal of Mathematical Analysis and Applications 271 (2002), 267-282. Correction, Journal of Mathematical Analysis and Applications 280 (2003), 195-196.

  19. Compactness in the d-bar-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect (with Michael Christ), Advances in Mathematics 197 (2005), 1-40

  20. Hearing pseudoconvexity with the Kohn Laplacian, Mathematische Annalen 331 (2005), 475-485.

  21. Spectrum of the d-bar-Neumann Laplacian on polydiscs, Proceedings of the American Mathematical Society 135 (2007), 725–730.

  22. Hearing the type of a domain in C2 with the d-bar-Neumann Laplacian, Advances in Mathematics 219 (2008), 568-603.

  23. The Kobayashi metric in the normal direction and the mapping problem, Complex Variables and Elliptic Equations 54 (2009), 303-316.

  24. The d-bar-cohomology groups, holomorphic Morse inequalities, and finite type conditions (with Howard Jacobowitz), Pure and Applied Mathematics Quarterly 6(2010), 875-914.

  25. Positivity of the d-bar-Neumann Laplacian, Complex Analysis: Several complex variables and connections with PDEs and geometry (Fribourg 2008), P. Ebenfelt, N. Hungerbuhler, J. Kohn, N. Mok, E. Straube (Eds), in the series: Trends in Mathematics, Springer, 2010, 145-158.

  26. Comparison of the Bergman and Szegö kernels (with Bo-Yong Chen), Advances in Mathematics 228 (2011), 2366-2384.

  27. The reproducing kernels and the finite type conditions (with Bo-Yong Chen), Illinois Journal of Mathematics 56 (2012), 67-83.

  28. Estimates of invariant metrics on pseudoconvex domains near boundaries with constant Levi ranks, Journal of Geometric Analysis 24 (2014), 32-46.

  29. The Diederich-Fornaess exponent and non-existence of Stein domains with Levi-flat boundaries (with Mei-Chi Shaw), Journal of Geometric Analysis 26 (2016), 220-230.

  30. Logarithmic to linear shifts in Chinese Children’s representations of numerical and non-numerical order (with X. He, C. Tang, W. Zhang, Y. Chen, and J. Wang), Cognitive Development 38 (2016), 36-48.
  31. Stability of the Bergman kernel on a tower of coverings (with Bo-Yong Chen), Journal of Differential Geometry  104 (2016), 371-398.

  32. Hearing pseudoconvexity in Lipschitz domains with holes via d-bar (with Christine Laurent-Thiébaut and Mei-Chi Shaw), Mathematische Zeitschrift 287(2017), 1157-1181.

  33. Bounded plurisubharmonic exhaustion functions and Levi-flat hypersurfaces (with Mei-Chi Shaw), Acta Math. Sin. (Engl. Ser.) 34 (2018) 1269-1277.

  34. Spectral stability of the d-bar-Neumann Laplacian: The Kohn-Nirenberg elliptic regularization (with Chunhui Qiu and Weixia Zhu), Journal of Geometric Analysis 31 (2021), 3968–3987.

  35. Sobolev estimates and duality for d-bar on domains in (with Mei-Chi Shaw), Pure and Applied Mathematics Quarterly 18 (2022), 503–529.
  36. Spectral stability of the d-bar-Neumann Laplacian: Domain perturbations (with Weixia Zhu), Journal of Geometric Analysis 32 (2022), 1-34, DOI: 10.1007/s12220-021-00769-z.

  37. Positivity in the d-bar-Neumann problem, Handbook of Complex Analysis (edited by Steven Krantz), pp.89–132. CRC Press, 2022.

  38. Spectral stability of the Kohn Laplacian under perturbations of the boundary (with Howard Jacobowitz and Weixia Zhu), Journal of Mathematical Analysis and Applications (in press), 2023. https://doi.org/10.1016/j.jmaa.2024.128129.

  39. Multiplicities of eigenvalues for the Laplace operator on a square (with Jack Heimrath and Samuel Hsiao, Involve, a Journal of Mathematics (in press), 2023. PDF file.